Expression of the circadian clock gene Period 1 in neuroendocrine cells: an investigation using mice with a Per1::GFP transgene.
نویسندگان
چکیده
The circadian clock located in the suprachiasmatic nuclei (SCN) of the hypothalamus regulates daily temporal organization in behaviour and neuroendocrine function. The molecular basis for circadian rhythm generation is an interacting transcriptional/translational feedback loop comprised of several 'clock genes' and their respective protein products. Clock genes are expressed not only in the SCN but also in numerous other locations throughout the brain, including regions rich in neuroendocrine cells. In order to investigate whether neuroendocrine cells function as autonomous oscillators, we used female transgenic mice in which an unstable, degradable jellyfish green fluorescent protein (GFP) gene is driven by a mouse Period 1 (Per1) gene promoter. Mice were injected (s.c.) with fluorogold (FG) in order to label neuroendocrine cells and brain sections were double-labelled for either FG and Per1 mRNA (labelled by GFP immunostaining) or FG and PER1 protein using fluorescence immunocytochemistry. Mice were killed during either the day or night. Neuroendocrine cells contained Per1 mRNA and PER1 protein in several brain regions with the greatest proportion of double-labelled cells occurring in the arcuate nucleus (Arc). The number of neuroendocrine cells labelled was not affected by the stage of the estrous cycle. Fewer FG-labelled cells expressed Per1 message and protein during the night compared to the day. In the Arc, staining for tyrosine hydroxylase revealed that neuroendocrine cells expressing Per1 message and protein were dopaminergic. Together, these findings suggest that neuroendocrine cells contain the molecular machinery necessary to oscillate independently. It remains to be determined whether these cells actually function as autonomous oscillators or whether these rhythms are driven by signals from the SCN. These findings also indicate that the endocrine system represents an opportunity to study the interactions between central (SCN and neuroendocrine cells) and peripheral circadian (endocrine gland) oscillators.
منابع مشابه
Cellular location and circadian rhythm of expression of the biological clock gene Period 1 in the mouse retina.
The cellular location and rhythmic expression of Period 1 (Per1) circadian clock gene were examined in the retina of a Per1::GFP transgenic mouse. Mouse Per1 (mPer1) RNA was localized to inner nuclear and ganglion cell layers but was absent in the outer nuclear (photoreceptor) layer. Green fluorescent protein (GFP), which was shown to colocalize with PER1 protein, was found in a few subtypes of...
متن کاملThe biological clock nucleus: a multiphasic oscillator network regulated by light.
The circadian clock nucleus of the mammalian brain is composed of thousands of oscillator neurons, each driven by the cell-autonomous action of a defined set of circadian clock genes. A critical question is how these individual oscillators are organized into an internal clock that times behavior and physiology. We examined the neural organization of the suprachiasmatic nucleus (SCN) through tim...
متن کاملThe circadian clock protein Period 1 regulates expression of the renal epithelial sodium channel in mice.
The mineralocorticoid aldosterone is a major regulator of sodium transport in target epithelia and contributes to the control of blood pressure and cardiac function. It specifically functions to increase renal absorption of sodium from tubular fluid via regulation of the alpha subunit of the epithelial sodium channel (alphaENaC). We previously used microarray technology to identify the immediat...
متن کاملPhenotype matters: identification of light-responsive cells in the mouse suprachiasmatic nucleus.
The suprachiasmatic nucleus (SCN) of the hypothalamus is the neural locus of the circadian clock. To explore the organization of the SCN, two strains of transgenic mice, each bearing a jellyfish green fluorescent protein (GFP) reporter, were used. In one, GFP was driven by the promoter region of the mouse Period1 gene (mPer1) (Per1::GFP mouse), whereas in the other, GFP was inserted in the prom...
متن کاملInvestigation of an Optimized Context for the Expression of GFP as a Reporter Gene in Chlamydomonas Reinhardtii
Background: Chlamydomonas reinhardtii is a novel recombinant eukaryotic expression system with many advantages including fast growth rate, rapid scalability, absence of human pathogens and the ability to fold and assemble complex proteins accurately, however, obstacle relatively low expression level necessitates optimizing foreign gene expression in this system. The Green Fluorescent Protein (G...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The European journal of neuroscience
دوره 17 2 شماره
صفحات -
تاریخ انتشار 2003